
J .  Fluid Mech. (1984), vol. 142, p p .  251-267 

Printed in Great Britain 

25 1 
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The static pressure-hole problem is investigated both theoretically and experimen- 
tally. The influence of all significant dimensionless parameters is brought to light. 
These parameters represent the effects of the boundary layer, of the velocity gradient 
and of the wall curvature. A partial linearization makes i t  possible to propose a 
formula of correction containing three influence functions which cannot be determined 
by the theory. A limited number of experiments on appropriate models leads to the 
determination of these functions in case of practical requirements. So, a method of 
correction is obtained, but only in incompressible flow. The previous formula has been 
verified in two complex flows. The importance of the correction on the pressure drag 
of a slender body is brought to light and the difficulties in the application on the 
method are emphasized. 

1. Introduction 
The wall pressure in a flow is usually measured by drilling a hole and connecting 

i t  to a manometer. The consequence of the local perturbation generated by a hole 
of diameter d is that the measured pressure pd is somewhat different from the true 
pressure po corresponding to  d = 0. 

This problem has already been studied on several occasions, mainly in turbulent 
pipe flow (Shaw 1960; Ray 1956; Livesey, Jackson & Southern 1962; Franklin & 
Wallace 1970; Myadzu 1936; L. C. Squire 1983 private communication). (For an 
extensive bibliography see Barat (1973) and Chue ( 1 9 7 9 ) ~  Some experiments have 
also been made in high-speed flow (Flack 1978; Moulden et al. 1977; Morrisson, 
Sheppard & Williams 1966; Pugh, Pet0 & Ward 1970; Rainbird 1967; Rayle 1949). 
The results thus obtained are incomplete; furthermore they do not entirely coincide 
with each other, so that the problem still remains unsolved. 

One result which seems unquestionable is the fact that the error p d - p ,  is an 
increasing function of d. As it is very difficult to drill holes smaller than 0.2 mm in 
diameter, and as, on the other hand, wind-tunnel models are not large, the error must 
often be taken into account. This is especially true when pressure measurements are 
used to determine a small quantity such as, for instance, the drag coefficient of a 
slender body. 

The aim of this paper is to provide a universal method of correction (Ducruet 
1983a, b ;  Ducruet & Dyment 1981). 

Our work is restricted to steady incompressible flows. First we collect the 
dimensionless parameters which are significant for the problem. An analysis of the 
phenomenon and some experimental investigations show that the influence of the hole 
Reynolds number can be eliminated. This simplification yields the result that, for 
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holes of a given depth-to-diameter ratio h / d ,  only three characteristic parameters are 
significant. Next, a partial linearization enables us to separate the effects of both 
velocity gradient and wall curvature. 

The previous theoretical approach leads to a formula of correction in which there 
appear to be three functions of the boundary-layer parameter and of the depth- 
to-diameter ratio. These functions must be determined experimentally. 

The effect of the boundary layer alone has been investigated in experiments on a 
flat plate, both in laminar and turbulent regimes. 

The influence of the velocity gradient has been estimated on various wedges in order 
to cancel the curvature effects. 

The influence of the wall curvature has been studied in experiments with coaxial 
rotating cylinders, since the velocity gradient is zero in that flow. 

In  all our tests two values of h / d  have been considered. 
As the pressure error to be detected is very small, i t  cannot be evaluated in any 

other way than by simultaneous and direct differential measurements made between 
holes of different diameters located on the same generatrix of the model. The exact 
pressure is obtained by extrapolation to d = 0. This process is quite accurate because 
the extrapolated result must be the same for any value of h/d.  

The method we are putting forward has been applied a t  first to the flow around 
a cylinder. It has been verified that the superposition of the three elementary errors 
contained in the formula provides a result which is very close to the actual error, 
directly obtained by extrapolation to  d = 0 of measurements made on the cylinder. 

Another verification has been carried out on the flow around an airfoil. Measurements 
made for two sets of orifices of different diameters lead to  the same value of the 
corrected pressure. The drag obtained by integrating the prewure thus measured is 
considerably different from the actual drag. 

2. Dimensional analysis 
Let us suppose that the flow is two-dimensional and that the rear of the orifice is 

large compared with d .  The properties of the fluid in the vicinity of the orifice can 
be produced by a number of different flows : this means that we have to consider the 
problem from a local point of view. 

The fluid is characterized by its density p and its kinematic viscosity v. 
The wall can be locally represented by its osculating circle of diameter D. Let Oxyz 

be the system of axes shown on figure 1 .  The no-slip condition holds for x2 + y2 = $?, 
-h < z ,< 0, and for x2+z2+Dz = 0. 

As the disturbances created by the hole are small, the boundary layer remains 
almost the same as when d = 0. Let u, be the external velocity and u the velocity 
inside the boundary layer. The velocity profile can be expressed in terms of z / 8  and 
82uex/v, 8 being the momentum thickness and ue, the local velocity gradient 
(Schlichting 1979). 

It follows from the previous considerations that the parameters which go into the 
problem are p, v ,  d ,  h ,  D, 8, u, and uex. The pressure p ,  outside the boundary layer 
does not interfere because the fluid is incompressible. When applying the Vaschy- 
Buckingham theorem one obtains (Ducruet 1 9 8 3 ~ ;  Ducruet & Dyment 1981) : 
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FIQURE 1.  A schematic representation of EL cavity. 

When the flow is three-dimensional D represents the diameter of the osculating 
sphere. It is usually admitted that the parameters which characterize the transverse 
velocity along Oy in the boundary layer are the same as those concerning u/ue, which 
is calculated as in a two-dimensional flow (Eichelbrenner 1958). Consequently ( 1 )  still 
holds for three-dimensional flow, a t  least as a first approximation. 

3. Effect of the Reynolds number 
Let us consider similar orifices ( h l d  constant). For d very close to zero the flow in 

the vicinity of the orifice may be regarded as creeping. Therefore p disappears from 
the set of parameters and (1)  is replaced by 

or (3) 

with Re = u,d/v.  
As d is small the function x can be expanded. F o r d  = 0, x and its first derivatives 

must vanish in order to obtain pd =p,. As a result the expansion begins with terms 
proportional to d 2 ,  so that p d - p ,  is proportional to pvd. 

Consider now larger values of Re. Above a certain value Be the shear layer that 
separates the fluid inside the orifice from that outside becomes unstable and produces 
a mixing layer. Thus, for Re > 8, the phenomenon is independent of the viscosity, 
and consequently Re must disappear from ( 1 ) .  

A rough estimate of Be has been obtained by visualization in a free-surface water 
channel (Ducruet 1983a). The orifice was represented by a vertical slot containing 
coloured water. The freestream velocity being gradually increased, the value 8, is 
reached as soon as the external flow becomes coloured. That occurs for 8, x 40. I n  
similar experiments carried out with cylindrical holes, the value obtained for 8, was 
about 250 (Squire 1983 private communication). Consequently the range of values of 
d corresponding to Re < 8, is very narrow. For instance, with ambient air, 
u, = 30 m/s and 8, = 250, we get d x 10-' mm! 

An attempt was made to ensure that the hole Reynolds number has no influence. 
It is rather difficult to change each dimensionless parameter separately, but we 
succeeded in doing it with the rotating cylinders described in $8 below. We found 
that, within the range 840-3685, u e d / v  has no influence on the dimensionless pressure 
error. 

9-2 
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The previous result shows that, when we leave Re out, our analysis is still valid, 
but for a very minute domain close to d = 0. Hence (1) can be written 

It must be noticed that, for orifices located in the vicinity of a stagnation point, 

Precisely, a t  a stagnation point the representation (1) is not valid because ue = 0. 
where the velocity is low, the condition Re > Be may not be fulfilled. 

It is replaced by 
Pi2-pQ-Q (" ex  v d 2 :  ;, ;). 
PvUex 

But, as 8(ueX/v) i  is constant (Schlichting 1979), we obtain 

If we consider the flow around the osculating cylinder we have (Schlichting 1979) 
uex = 4u,/D, where u, is the freestream velocity (a similar relation holds in 
three-dimensional flow for the osculating sphere). This means that (5) can also be 
written 

Let us now consider an orifice located in the separated domain behind a thick body. 
Such a domain depends almost entirely on the transverse size H of the body. 
Moreover, we are supposing that the error is independent of the position of the orifice 
except very close to separation or rear stagnation points. Therefore the error is a 
function of p, v ,  urn, H and d .  As therc is a mixing layer at the entrance of the orifice, 
v disappears and we obtain (Ducruet 1983a) 

4. Linearization 
Let us return to the general case. As the dimensionless parameters uexd/ue and 

d / D  are always small, we can do a partial linearization of ( 4 )  and write (Ducruet 
1 9 8 3 ~ ;  Ducruet & Dyment 1981) 

The influence functions F ,  G, and G, depend on d /8 ,  on h/d  and on the nature of 

For d < 8 a completely linearized formula can be written: 
the boundary layer, whether laminar or turbulent. 

On the other hand, for d + 8, the function F can be restricted to its asymptotic 
value, say Fl. Now denoting the values of G, and G, by J ,  and J,, we obtain 
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Owing to the linearization the influences of u,,d/ue and d / D  are independent. The 
influence of the boundary layer is independent too, but only in the extreme cases d + 8 
and d 9 8. The coefficients I,, I,, I,, c, J ,  and J ,  are functions of h l d ,  but only I ,  
and Fl depend on the nature of the boundary layer. 

All the previous results may be extended to high-speed flow (Ducruet 1983a). In  
this case p is replaced by pe and p ,  must be taken into account. The corresponding 
dimensionless parameter is the local Mach number Me,  so that now the influence 
functions also depend on Me. 

5. Experimental methods 
The functions F ,  (2, and G, can only be determined experimentally. 
The influences of the boundary layer and of the velocity gradient have been 

investigated in a continuous-running closed-circuit wind tunnel. The test section is 
450 x 450 mm2 in size. The upstream velocity u, was close to 25 m/s and the intensity 
of the turbulence was about 0.37 yo. 

Measurements give access to the pressure coefficient Kd = (pd -p,)/@aL, p ,  being 
the undisturbed flow pressure. The Bernoulli law enables us to write 

On the other hand, (p,-p,)/+pu~ is proportional to 6 / D  (Schlichting 1979) and even 
to O2 when the wall is flat. Thus this quantity is negligible and we obtain 

For d = 0. Kd = KO,  so that finally 

Pressure measurements have been achieved with ' Debro Miniscope ' micromanometers. 
Their main characteristic is that the measurement is made through a sighting 
telescope, magnifying ten times and which can be adjusted with a micrometric screw. 
The reading is made directly, without any parallax error. The accuracy of these 
instruments is estimated a t  about 2 x mm of water. The result is that  only 
differences between measured values of Kd larger than lop3 have some significance. 
The high response time of these instruments constitutes a major drawback. 

The influence of the wall curvature has been studied in flows between coaxial 
cylinders (Ducruet 1983a, b ) .  The inner cylinder of diameter D was fixed and the outer 
cylinder was rotating. 

All the models are equipped with holes of depth-to-diameter ratio equal to 3 and 
1.  The holes are perpendicular to the wall. The cavity behind the pressure hole is 
cylindrical and of diameter d ,  much larger than d in order to eliminate the influence 
of d,/d. The quality of the boring was verified by a careful examination with a 
microscope magnifying 50 times and yielding a measurement of d with an accuracy 
of mm. The holes were drilled in cylindrical plugs, which were afterwards 
inserted into the model. That way a defective hole could easily be replaced. The 
smallest diameter which we tested was 0.2 mm. 

The pressure error to be detected is very small: it must be estimated by a direct 
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FIGURE 2. Influence of the boundary layer. 
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FIGURE 3. Influence of the turbulent layer: (a )  Ray (1956) ; ( b )  Shaw (1960) ; (c) Livesey et al. (1962) ; 
(d )  present results. 

differential measurement. Consequently, models must be two-dimensional, and we 
can only take into consideration simultaneous measurements between orifices located 
on the same generatrix. This requires that the flow be rigorously the same spanwise. 

All models are equipped with interchangeable elements corresponding to a given 
value of h / d  and made up of rows of orifices of different diameter, located along 
generatrices of the model. Obviously, great care must be taken in positioning the 
orifices exactly. The distance between neighbouring orifices was chosen sufficiently 
large to avoid any mutual influence. This distance has been roughly evaluated by 
preliminary experiments (Ducruet 1983 a) .  

The true coefficient KO is obtained by extrapolation to d = 0 of the plots of Kd versus 
d .  This extrapolation has a good accuracy because we have at least two curves 
corresponding to different values of h / d  : as KO is independent of h / d ,  all curves must 
provide the same extrapolated value. A slight difficulty may appear in the vicinity 
of d = 0. According to the reasoning in $3,  for d c d the dimensionless error 
(p,--p,)/+uE is represented by a set of curves with u,d/w as a parameter; but for 
d > d there is only one curve, because the error no longer depends on u,d/w. As the 
first point is obtained for d x 0.2 mm, i t  is obvious that the range d c dcannot be 
reached in experiments. But in fact the resulting error is smaller than the error due 
to the pressure measurement. 
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6. Influence of the boundary layer 
The function F ,  which represents the effects of the boundary layer alone, has been 

determined by means of experiments in an external flow without velocity gradient 
and curvature. Consequently the chosen model was a flat plate a t  zero angle of attack. 
The model is 500 mm long and 18 mm thick. The leading edge has such a form that 
the velocity gradient is positive and vanishes smoothly after a distance of about 
100 mm. A housing, 200 mm long, is hollowed in the central part in order to receive 
an element equipped with 5 rows of orifices. Five elements have been constructed in 
order to  obtain a large number of values of dlf?. For tests with a turbulent boundary 
layer, artificial transition was instigated near the leading edge. 

I n  each case the boundary-layer velocity profile was obtained with the help of a 
small total-pressure probe. It was verified that the velocity profiles coincide with the 
classical laminar and turbulent curves. 

The values of Kd derived from measurements a t  every row of orifices give the exact 
value KO by extrapolation. Next KO is used to calculate F with the help of (12). The 
final results are given in figure 2. We can see that F is an increasing function of d / 8 :  
the error is more important when the boundary layer is turbulent and moreover i t  
is larger for h/d = 1 than for hld = 3. The asymptote E; is reached for d x 88 in the 
laminar case and d x 158 in the turbulent one: these values roughly correspond to 
the boundary-layer thickness. Fl is determined accurately, as opposed to the 
coefficient I,, which is equal to the slope a t  the origin. 

For comparison with results obtained in the past for turbulent flow (Shaw 1960; 
Ray 1956; Livesey et al. 1962) F and d / 8  must be changed into Ap* = (pd -po) /7  and 
d* = ( d / v )  (7/p)2, where 7 is the wall shear stress. The transformation has been 
performed by using the +-power law for the velocity profile (Schlichting 1979). The 
comparison is shown on figure 3. Our results are close to those of Ray (1956) for small 
values of d and to those of Shaw (1960) for large values; but they are in complete 
disagreement with those of Livesey et al. (1962). 

7. Influence of the velocity gradient 
The function G, must be determined in experiments on flat walls in order to cancel 

the curvature effects. Of course, the boundary-layer influence cannot be avoided, and 
measurements enable us to  compute F + G, u,,d/u,. As F is already known, G, can 
easily be deduced. 

Two types of models have been tested in order to cover the whole range of variation 
of d/8 .  For d % 8 we have used wedges of total angle g3 = 30", 60" and 90". Let x 
be the distance from the apex. The theoretical expression for u, should be Cx", with 
C constant and q5 = 2xn/(n+ 1) .  Since the model is finite and because the flow is 
restricted by the walls, the actual exponent n' given by pressure measurements is 
somewhat different from n. We can define a fictitious angle q5' such that 
g3' = 2xn'/(n'+ 1).  We then have u,,/u, = n'/x, and 8 is obtained by the well-known 
Falkner-Skan solution (Schlichting 1979). 

The model can receive two interchangeable elements containing two rows of orifices 
located a t  the stations x = 10 mm and 24 mm. 

Some results concerning K ,  are shown on figure 4 as an example. These should serve 
to demonstrate the accuracy of the extrapolation. From the extrapolated value KO 
we can derive u,/u, by (KO-  I )  uL/uE+ 1 = 0 resulting from (ii). Then u,, n', g3', 
u,,/u, and 8 are obtained easily. Finally (12) is used to obtain the error, which is 
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FIGURE 4. Experiments on wedges in laminar flow. 

shown versus u,, d l u ,  on figure 5. Only the curve corresponding to d % 8 can be drawn 
accurately: it is a straight line with slope J ,  intersecting the d = 0 axis at Fl. 

In the model intended for experiments ford - 8 and d 4 8, two wedges with slopes 
45" and 60" were constructed. They were preceded by a flat plate long enough to 
thicken the boundary layer. The joint between the plate and the wedge was made 
round to avoid separation. Four elements equipped with two rows of orifices were 
used. A fifth one, equipped with very small total probes, was used exclusively for 
exploring the turbulent boundary layer a t  the stations where orifices are located. 

As previously, KO is obtained by extrapolation from the measured values of K d ;  
then the error is deduced from (12). The results are shown versus u,,d/u, for constant 
d / B  on figure 6. The ordinate at origin is the turbulent value of F previously obtained. 
We can see that, at least for values of d / 8  for which more than two points exist, the 
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FIGURE 5. Determination of G, in laminar flow. 

linear formula is appropriate. The slope of the drawn lines provides G, in turbulent 
flow. On the same figure we have also plotted the line of slope J ,  but with the value 
of Fl corresponding to the turbulent regime. 

As d / 8  = 0 cannot be experimentally achieved, the coefficient I ,  must be determined 
as the limiting value of G, when d / 8  tends towards zero. It seems that  this asymptotic 
value is almost reached for d / 8  x 0.2. Of course, I ,  is not accurately known. But, 
from a practical point of view this is not very important because, when put into 
practice, the value I ,  is hardly ever needed: on a model in a wind tunnel, values such 
as d 4 8 are found far from the leading edge, where u,,d/ue is very small, so that 
the correction only comes from the boundary-layer effect. 

To summarize, we have obtained J ,  and G, for d / 8  > 2 in laminar flow, and I ,  
and G, for d / 8  < 2 in turbulent flow. These cases are the most common ones 
encountered on an airfoil. All our results are gathered on figure 7 .  As J ,  and I ,  are 
the same in both laminar and turbulent flows, it appears on the whole that G, depends 
very little on the nature of the boundary layer (Ducruet 1 9 8 3 ~ ;  Ducruet & Dyment 
1981). 
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8. Influence of the wall curvature 
The influence of the curvature has been isolated by means of experiments with 

rotating cylinders. The inner cylinder of diameter D was a t  rest and the outer cylinder 
of diameter AD was rotating with a constant frequency N .  I n  order to obtain a large 
number of values of d / D  and d / B ,  three outer cylinders and four inner cylinders (two 
for each value of h /d )  were built. The chosen values were D = 48,60 mm and AD = 64, 
72,84 mm. The flow between the cylinder was laminar and stable (Schlichting 1979). 
The velocity was 

u = -(r--:), 2nNh2 
A2- 1 

r being the distance to the axis. We have 
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with u, = nDN,  so that  

log h - 
f9 2h - = h-- 
D h2- 1 

Here, as A is smaller than 1.75, 0 is very close to &(A- 1) B. 
On each inner cylinder an orifice was chosen as a reference (subscript r )  and all 

pressure measurements were made simultaneously between this orifice and the others. 
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Azimuth d/mm (measured) (calculated) 

10" 0.34 0.114 0.062 0.063 
0.77 0.258 0.154 0.140 

15" 0.34 0.077 0.051 0.046 
0.77 0.173 0.092 0.094 

20" 0.34 0.059 0.033 0.036 
0.77 0.135 0.076 0.074 
1.54 0.270 0.125 0.140 

25" 0.34 0.049 0.027 0.031 
0.77 0.111 0.060 0.061 
1.54 0.222 0.099 0.100 

30" 0.34 0.037 0.020 0.025 
0.77 0.085 0.043 0.047 
1.54 0.170 0.076 0.087 

35" 0.34 0.030 0.017 0.020 
0.77 0.068 0.037 0.038 
1.54 0.136 0.063 0.069 

40" 0.34 0.024 0.016 0.018 
0.77 0.055 0.029 0.031 
1.54 0.110 0.051 0.055 
3.03 0.215 0.103 0.097 

45" 0.34 0.021 0.015 0.016 
0.77 0.046 0.027 0.026 
1.54 0.092 0.045 0.046 
3.03 0.175 0.090 0.080 

50" 0.34 0.016 0.013 0.013 
0.77 0.037 0.028 0.022 
1.54 0.074 0.043 0.037 
3.03 0.145 0.080 0.064 

55" 0.34 0.01 1 0.006 0.01 1 
0.77 0.026 0.013 0.016 
1.54 0.052 0.026 0.024 
3.03 0.103 0.049 0.042 

60" 0.34 0.009 0.005 0.009 
0.77 0.021 0.010 0.012 
1.54 0.042 0.022 0.019 
3.03 0.082 0.041 0.031 

TABLE 1 .  Flow around a cylinder with h /d  x 3; verification of (10) 

Figure 8 shows some results for h l d  = 3 .  The extrapolation gives po-p,: hence, 
by subtraction, p d - p o ,  The dimensionless error is shown on figure 9 versus d / D  for 
various values of d / 8 .  As more than two points generally correspond to a given d / 8 ,  
we can ascertain that the curves we obtain are straight lines. The ordinate a t  the origin 
is the laminar value of F as in $7, and the slope is equal to G,. J ,  is obtained by 
large values of d / 8  (in fact for d > 5 8 ) .  I ,  is obtained in the same manner as Iv ; the 
remark made about the accuracy concerning I, is also valid for I,. 

The two curves in figure 10 give G, in terms of d / 8  only in laminar flow, except 
for the extreme values I ,  and J,. 

From a practical point of view this result is sufficient because for an airfoil the 
curvature interferes only in the vicinity of the leading edge where the boundary layer 
is generally laminar (Ducruet 1983a, b) .  
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9. Verifications and applications 
The method suggested here was applied at first to the flow around a cylinder of 

diameter D = 30 mm in the wind tunnel described in $5.  The Reynolds number was 
close to 5 x lo4. Four cylinders were built, each equipped with 4 orifices located on 
a generatrix. For three of them, hld is constant and equal to 3, 5 and 7,  and d / D  
lies between and 1O-I. For the fourth cylinder d is constant, and hld lies between 
0.4 and 9.4. 

The verification was made for the cylinder with hld = 3. For all cylinders we had 
d %- 0, so that (10) had to be used. The results are to be compared to the measured 
values (Kd - K O ) / (  1 - K O ) .  Of course, the comparison was made upstream of separation. 
Table 1 shows that results are close to each other when u,,d/u, 5 0.15. 

As the method seems satisfactory, we can use the measurements made on the other 
cylinders to obtain F,,  J ,  and J ,  for hld = 5 and 7, and also for 2 on the last cylinder, 
with d/D constant. It appears that 4 is almost constant for h/d 2 3. The same is 
true concerning Jc for hld 2 5 .  On the other hand, no asymptotic value of J ,  could 
be reached (figure 11) .  

Measurements made in the separated domains downstream from the cylinders give 
results related to (7). This formula seems to be verified (figure 12). 
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FIGURE 12. The error in a separated domain. 

103E 1 0 3 ~  KO KO 
d = 0.3 mm d = 0.6 mm X I 1  d = 0.3 mm d = 0.6 mm 

_. - 0 
0.0078 74 0.683 - 

0.0103 51 - 0.450 - 

- 

0.0246 23 37 -0.401 -0.400 
0.0252 23 37 -0.405 -0.404 
0.0338 1 -6 -0.565 -0.562 
0.0432 5 2 -0.526 -0.524 
0.0460 5 2 -0.444 -0.440 
0.0795 7.5 7 -0.339 -0.338 
0.0803 8.5 7 -0.336 -0.336 
0.1 140 8 9 -0.316 -0.314 
0.1331 8 9 -0.300 -0.297 
0.1609 7.5 9 -0.306 -0.302 
0.2796 7 8.5 -0.292 -0.289 
0.2800 7 8.5 -0.292 -0.289 
0.3797 6.5 8 -0.294 -0.290 
0.3813 6.5 8 -0.297 -0.295 
0.4796 6 7.5 -0.281 -0.279 

-0.285 -0.282 0.4816 6 7.5 
0.5800 5.5 7 -0.219 -0.218 
0.5818 5.5 7 -0.221 -0.219 
0.6807 5.5 7 -0.166 -0.165 
0.6820 5.5 7 -0.167 -0.166 
0.7813 5.5 7 -0.124 -0.123 
0.7827 5.5 7 -0.124 -0.124 
0.9493 4.5 6 - 0.034 -0.034 
0.9500 4.5 6 -0.032 -0.033 

TABLE 2. Flow around an ONERA D airfoil; 1 = 150 mm, u,l/v x 2.5 x lo5. x is the curvilinear 
abscissa from the leading edge; E the error calculated with (8). 

As for the stagnation point and its vicinity, special measurements were made 
(Ducruet 1 9 8 3 ~ ) .  They showed that as d / D  4 1 (6) can be linearized with regard to 
d / D .  In  fact the stagnation pressure does not pose problems, because it can easily 
be calculated with the Bernoulli law. 

Our second application concerns an airfoil of chord 150 mm at zero angle of attack 
and a t  an upstream velocity u, x 25 m/s (Ducruet 1 9 8 3 ~ ) .  Two sets of twenty-seven 
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FIGURE 13. Influence on the pressure drag of an airfoil. 

orifices of diameter 0.3 mm and 0.6 mm were used. The orifices are located in pairs 
on the same generatrix, at equal distances from the wind-tunnel walls. I n  table 2 the 
two last columns represent the corrected values obtained by applying (8) to the 
measured pressures for d = 0.3 and 0.6 mm. It can be seen that the two orifices lead 
to almost the same value of KO. 

The actual drag coefficient CDo was calculated by integration of KO,  and then 
compared with the drag coefficient C ,  deduced from the pressures already measured: 
the result is that  C, is 26% larger than CDo for d = 0.6 mm and 14% larger for 
d = 0.3 mm (figure 13). 

10. Conclusion 
As the errors generated by the boundary layer, the velocity gradient and the wall 

curvature can be of opposite sign, one may look for the value of d that  gives p ,  = po.  
Let us consider similar airfoils of chord 1 and put d* = d / l ,  i3* = 011, D* = D/1, 
x* = 211, u,* = u,/u,, 6 = d / B .  

Substituting in (8) and equating to zero gives 

F+Si3* ( G " T + -  =:* 2) = o ,  

where u,* depends only on x*, whereas 8* depends on x* and u,l/v. 
As F is positive there is a solution if the velocity gradient is negative and (or) if 

the wall is convex. Of course the obtained value of d must be acceptable : this means 
it must be positive and such that u,,d/ue and d / D  be small. The difficulty is that 
the previous value changes with the angle of attack because u,, ueX and 8 change. 
Consequently, from a practical point of view, the error cannot be avoided. 

It must be noticed that the use of the methods of correction is quite difficult. It 
requires the knowledge of D, u,, u,, and 0. For two-dimensional flow there is no major 
difficulty, but that  is not the case for three-dimensional flow, especially, because the 
direction of the outer velocity is not known in advance. 

All the results presented in $9 show the importance of the method of correction. 
The need of such a method is particularly evident for cryogenic wind tunnels, where 
models are small and boundary layers are thin, so that the disturbances generated 
by the orifices can be important. As cryogenic wind tunnels are built for high-speed 
flow, the method must be extended to  compressible fluid: that  remains to  be done. 
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